The C-numerical range and unitary dilations
نویسندگان
چکیده
For an $$n\times n$$ complex matrix C, the C-numerical range of a bounded linear operator T acting on Hilbert space dimension at least n is set numbers $$\textrm{tr}\,(CX\,^*\,TX)$$ , where X partial isometry satisfying $$X^*X = I_n$$ . It shown that $$\begin{aligned} \textbf{cl}(W_C(T)) \cap \{\textbf{cl}(W_C(U)): U \hbox { unitary dilation } T\} \end{aligned}$$ for any contraction if and only C rank one normal matrix.
منابع مشابه
Constraint Unitary Dilations and Numerical Ranges
It is shown that each contraction A on a Hilbert space H, with A + A I for some 2 R, has a unitary dilation U on H H satisfying U + U I. This is used to settle a conjecture of Halmos in the aarmative: The closure of the numerical range of each contraction A is the intersection of the closures of the numerical ranges of all unitary dilations of A. By means of the duality theory of completely pos...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولC*-Algebra numerical range of quadratic elements
It is shown that the result of Tso-Wu on the elliptical shape of the numerical range of quadratic operators holds also for the C*-algebra numerical range.
متن کاملThe Significance of the C-Numerical Range and the Local C-Numerical Range in Quantum Control and Quantum Information
This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control—and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a p...
متن کاملHigher-rank Numerical Ranges and Dilations
For any n-by-n complex matrix A and any k, 1 ≤ k ≤ n, let Λk(A) = {λ ∈ C : X∗AX = λIk for some n-by-k X satisfying X∗X = Ik} be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Λk(A) = ∩{Λk(U) : U is an (n + dA)-by-(n + dA) unitary dilation of A}, where dA = rank (In − A∗A). This extends and refines previous results of Choi and Li on constrained unitary dilations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Scientiarum Mathematicarum
سال: 2023
ISSN: ['0324-5462', '2064-8316', '0001-6969']
DOI: https://doi.org/10.1007/s44146-023-00071-0